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Experiments with a self-propelled body submerged in 
a fluid with a vertical density gradient 
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Institute of Oceanography, University of British Columbia, Vancouver 8, B.C. 

(Received 2 August 1962) 

It is shown that the turbulent wake of a self-propelled body moving in a fluid with 
a vertical density gradient is considerably different than of the same body moving 
in a fluid having no density gradient. In  the uniform density case, the turbulent 
mixed fluid behind the body expands into an irregular conical shape. In  the case 
of a density gradient, the initial expansion of the mixed fluid is quickly followed 
by a collapse in the vertical direction which is accompanied by a further spreading 
in the horizontal direction. This phenomenon is caused by the force of gravity. 
The volume of fluid behind the self-propelled body has a more or less constant 
density due to mixing. Thus, it  is forced to seek its own density level in the un- 
disturbed fluid. 

The collapsing vertical wake is shown to be an efficient generator of internal 
waves, many of high order. These manifest themselves in surface movements. 

The assumption that the internal waves are damped only by viscosity, not by 
turbulence, leads to results in general accord with the observations. 

Experimental equipment 
Figure 1, plate 1, is an over-all picture of the experimental apparatus. The tank 

is constructed of wood with transparent plastic facings. It is approximately 
17.5 cm wide, 33 cm deep, and is 100 cm long a t  the bottom and 150 cm long at the 
top. The tank was filled with about 24 1 of fluid to a depth of about 12.5 cm. A 
substantially uniform density gradient was formed by using 12 layers of different 
mixtures of water and glycerin. The bottom layer contained 22 yo glycerin (by 
volume) which gives a density of about 1.063 g ml. Each succeeding layer had 
2 yo less glycerin. Thus, the twelfth and top layer was 100 yo water. The average 
over-all density gradient was thus about 5.2 x 

The various layers were introduced into the tank by means of a fountain 
syringe. In  order to minimize mixing during the filling process it was necessary 
to stop the downward momentum of the liquid and divert it  horizontally. This 
was done by having the syringe nozzle pointed downward towards a thin balsa- 
wood sheet floating on the surface. Guides were necessary to prevent the sheet 
from moving out from under the nozzle. After filling, the balsa sheet was care- 

t Work done at the Scripps Institution of Oceanography, University of California, La 
Jolla, California. 

g ml-l cm-l. 
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fully removed and the tank not used for a few hours to allow a diffusing and 
blending of the layers to simulate more nearly a uniform gradient. 

Figure 2, plate 2, shows a close-up of the self-propelled body in the starting 
position at the left end of the tank. It consists of a small permanent-magnet-field 
motor having a diameter of about 2.2 cm. The 1.8 cm diameter plastic propeller is 
from a toy boat. The over-all length of the self-propelled body is about 4.5 cm. It is 
held in place by means of a re-formed paper clip hanging from the horizontal guide 
wire. One of the four supports for the guide is shown in figure 2. It is secured to 
the bottom of the tank with a rubber suction cup. The guide wire is lacquered 
black a t  the starting and stopping positions so that the paper clip will not make 
contact with the wire a t  these positions. The energy for the motor is supplied by 
a single dry cell, one terminal of which is connected to the guide wire, the other 
to a small flexible wire that trails from the bottom of the motor. The motor circuit 
is completed through the paper clip. Thus, the motor will not run until pushed off 
the non-conducting part of the guide wire a t  the start and will automatically stop 
a t  the other end. Launching is accomplished by means of a long straight wire 
spring, the end of which is shown being held against the left end of the paper-clip 
support in figure 2. Upon release, the spring moves the motor forward on to the 
conducting region and it is self-propelled over the centre 50cm length of the 
guide wire. The spring launching creates much less acceleration disturbance to 
the rather small volume of fluid in the tank than occurs if the motor is accelerated 
by the propeller alone. 

Figure 1 shows the 16mm motion picture camera used in obtaining pictures 
from which the quantitative data were derived. By means of the 45" mirror, 
shown in the centre of the tank, it was possible to photograph simultaneously 
the passage of the self-propelled body from above while i t  was being photo- 
graphed directly from the side. A transparent horizontal glass reticle is shown in 
place just above the water surface and under the mirror. 

Experimental results 
Figure 3, plate 3, shows the horizontal and vertical profiles of wakes caused 

by the passage of a self-propelled body through plain water without a density 
gradient (left three pictures), and also a similar situation with a fluid having a 
density gradient of 5.2 x g ml-l cm-1 (right three pictures). In  both cases the 
propelled body was 7-5 cm below the surface and travelled at about 45 cmlsec. The 
top two pictures may be considered taken a t  zero time. The next two pictures 
were taken 1 sec later, and the bottom two pictures were taken 3sec after the 
first ones. The turbulent region behind the model was made visible by dispensing 
blue liquid food colouring just in front of the propeller. This was done by attaching 
a glass tube to the body in such a way that its forward motion would force the 
dye contained in the tube through a nozzle directed to the front of the propeller. 
The dye was mixed with the proper amount of glycerin to make it slightly more 
dense than the fluid at the level of the propeller. By making the glass tube 
slightly bent at the two ends, it was possible to minimize leakage of the dye out 
of the tube before starting. 

Comparison of the top two pictures of figure 3 shows that there is little difference 
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in the initial growth of the wakes, either horizontally or vertically, regardless of 
whether there is a density gradient or not. At the end of the first second, as shown 
in the middle two pictures, the vertical wake in the uniform-density case is wider 
than in the density-gradient case. This is even more evident in the bottom two 
pictures that were taken 3 sec after the first ones. 

The build-up and subsequent collapse of the wake in thevertical direction when 
there is a density gradient is particularly interesting. The build-up is due to  the 
expanding region of turbulent fluid which has been given momentum by the 

Time after model passed under dye spots (sec) 

FIGURE 4. (a) Horizontal and vertical average wake widths versus time after body passes 
through a fluid with a vertical density gradient; runs I and 11. (b)  Horizontal distance 
between two dye spots 5 mm below fluid surface and initially placed about 4.25 cm on 
each side of the centre line; run 111. 

passage of the submerged body and the action of its propeller. The turbulent 
motion also mixes the 'tube' of fluid in the wake so that it attains a more or less 
uniform density which is the average density of the fluid from which it was mixed. 
However, a tube of constant-density fluid is not stable in a density gradient. 
Gravity causes such a tube of fluid to tend to seek its own density level in the 
surrounding fluid. In  so doing, the tube is flattened in the vertical direction and 
extended horizontally. In  a perfect infinite fluid with a vertical density gradient, 
the initial tube of mixed fluid would ultimately become infinitesimally thin 
vertically and infinitely wide horizontally. Practically, it  is not possible to attain 
the idealized situation. In  the case of the experiments described herein the 
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greatest limitation was the size of the tank compared to the size of the self-propelled 
body. The width of the tank was only about eight times, and the depth of the 
fluid only about five times, the body diameter. If these ratios had been greater 
the final vertical collapse shown in figure 3 (f) would have been more pronounced 
and the spreading of the horizontal wake would have been easier to see. 

Figure 4 ( a )  presents quantitative data showing, for two runs, average wake 
width versus time for a fluid with a vertical density gradient. Zero time was 
counted when the plane of the propeller of the self-propelled body cut the vertical 
and horizontal lines where measurements were made. The horizontal width is con- 
tinuing to increase a t  the end of 5 sec and has spread to about three-quarters of the 

--I-- 
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Time after model passed under dye spots (sec) 

FIGURE 5. (a )  Same as figure 4 ( b )  except longer time scale; run 111. ( b )  Solid curve 
represents horizontal distance between dye spots initially 1.75cm on each side of the 
centre line ; run 111. Dashed curve is same as figure 5 (a )  except that ordinate is multiplied 
by 0.59. ( c )  Horizontal distance between dye spots, one initially 0-5 cm from the centre 
line, the other 1.7 cm on the other side of the centre line; run IV. 

tank width. The vertical width increases to a peak a t  about 1 sec and the rate of 
increase is less than for the horizontal wake. After 1 sec the vertical wake starts 
to collapse and continues until about 2.5 sec. 

The vertical collapse of the mixed wake behind a self-propelled body moving 
in a fluid having a density gradient must of necessity cause readjustments in the 
surrounding fluid. It would be expected that the vertical collapse would cause 
convergence at the surface, perpendicular to the wake, in much the same way 
that convergence at the surface is caused by internal gravity waves. As will be 
seen below, the wake collapse also excites internal waves that cause a series of 
convergences and divergences until the internal waves are damped out. 
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Figure 5 shows the results of measurements of readjustments due to wake 
collapse. The ordinate is the horizontal distance between two dye spots which 
were placed about 5 mm below the surface, on a line perpendicular to the path 
of the submerged body. The origin of the time scale is the same as is used in 
figure 4. 

In  figure 5 (a) is shown the separation of two spots, originally about 4.25 cm 
on either side of the centre line in run 111. Figure 5 (b)  is also from run 111, but 
the spots were only 1-75 cm from the centre line. The dashed line in figure 5 (b)  will 
be discussed below in the section on theory. 

Figure 5 ( c )  concerns run IV. In  this case one spot was initially 0.5 cm from the 
centre line, the other 1.8 cm on the other side. As will be seen below, the motions 
shown in figure 5 are associated with internal waves. 

Figure 4 (b)  is an enlarged version of the data shown in figure 5 (a), to emphasize 
the early behaviour. The small divergence just before zero time is interesting. 
It is so small that it  is almost unobservable in the ‘noise’ of measurement error. 
It is possible that this divergence and the very small convergence at about 4 sec 
are due to the small surface waves caused by the passage of the submerged body. 
For the case studied here, the surface wave effects were small compared to the 
convergence due to wake collapse. 

Theory 
The effects of the motion of a body through a fluid may conveniently be divided 

into two groups: short-period effects due to the flow field around the body, and 
long-period effects due to the persistent wake of the body. With body length 
4.5 cm and speed 45 cm/sec, the short-period effects will have time constants in 
the neighbourhood of 0.1 sec. As will be seen below, internal waves in the density 
gradient of the experiment have much longer periods than this, and so very little 
energy may be expected to couple into the internal waves from the immediate 
flow field. Surface waves of length about 12 em, and about 0.2 cm, propagate at 
45 cm/sec, and some coupling of energy into the 12 cm wave may be expected, 
although since the top of the body is about 6 em below the surface, the coupling 
will not be efficient. 

For the wake, however, the situation is quite different. The forces on the tube 
of mixed fluid are precisely those which provide the restoring force in internal 
waves, so the wake should be an efficient generator of internal waves. 

We shall employ the following notation : x,  is the horizontal co-ordinate with 
origin on the centre line, x2 the vertical co-ordinate with origin a t  the surface, 
increasing downward, p the density, po the surface density, p = + l/p(ap/ax,) 
(cm-l), I@ the stream function of internal waves (cm2sec-l), D, W the depth and 
width of fluid in the basin (cm), k,, k, the horizontal and vertical radian wave- 
numbers of internal wave modes (cm-l), n, m the horizontal and vertical mode 
numbers (dimensionless integers), w the radian frequency of the internal wave 
mode (sec-l) ; gis the acceleration due to gravity (em sec-2)) 6 the vorticity (sec-I), 
v the kinematic viscosity (cm2sec-1), D, the viscous dissipation in the body of the 
fluid per unit length ( ~ m ~ s e c - ~ ) ,  D, the viscous dissipation due to walls (em4 sec-3), 
E the energy content per unit length (cm4 see-,), x a ‘displacement function’ 
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defined by axlat = y9 (cm2), a the depth of the centre of the mixed fluid disturbance 
(cm), b, is half the horizontal width of the mixed fluid disturbance (cm), b, is half 
the vertical thickness of the mixed fluid disturbance (cm), A the lateral displace- 
ment at the surface (cm), Gij the relative amplitude of a mode of horizontal order i 
and vertical order j (cmz), and Sij the exponential time-decay rate of Gij (see-1). 

Internal waves are particularly simple to analyse for an exponential density 
gradient. A linear density gradient, if the total density range is small, closely 
approximates to an exponential gradient. In  the present case, a linear gradient 
where the density never differs by more than 33 % from the mean, the assumption 
that the gradient is exponential will introduce very little error. 

We therefore consider first a frictionless incompressible fluid with density 

p = poe+Bx2. (1) 
described by 

mln f (sec)-l 

1 0.204 
2 0.121 
3 0.0834 
4 . 0.0644 
5 0.0510 
m 0 
4 0.295 
4 0-326 
0 0-359 

TABLE 1. Characteristic internal wave mode frequencies. 

Because of the finite time of passage of the body, the flow regime will not quite 
be two-dimensional, but differences from two-dimensionality should be small 
enough that the greatly increased complexity of a three-dimensional treatment 
is not warranted. 

It can readily be shown (cf. Lamb, 1932, Q 235) that two-dimensional internal 
waves in a rectangular basin may be described by the stream function y9 where 

q9 = A e - i h  sin k,x, sin k2x2 sin wt. (2) 
Here A is a constant of dimensions om2 sec-l. If the finite rectangular basin has 
depth D and width W ,  we have the requirements 

k, = nn/ W ,  k, = mrrr/D, 

where n and m are integers. The characteristic equation then gives w in terms of 
k,  and k,, 

(3) 

In  our experiment ,f? = 5.2 x 10-3cm-1, k, = 0-18n cm-l, Ic, = 0.25m cm-l, so that 
a sufficient approximation for equations (2) and (3) is 

and 

$A sin k,x, sin k,x, sin wt, 

0 2  = gp{(k;/k;) + 11-1 

= 5.1 ~ec-~(1 .96(m~/n~)  + 11-l. 

(4) 

(5) 
Table 1 shows some internal-wave eigen-frequencies as a function of mln. 
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Dissipation 
The nature of the motion, with wave-numbers of the order of lcm-l and 

viscosity of the order of 0.02 cm2 sec-l gives time constants of the order of 50 sec, 
which are not negligibly long relative to the duration of the experiment, and so 
are worth closer examination. Energy dissipation from the wave motion can be 
expected from three sources: viscous dissipation in the body of the fluid, viscous 
drag on the walls and interaction with the turbulence in the wake. The first two 
may be approximately calculated in a straightforward fashion, but about the 
third little is known. 

As to the first, it  seems apriori  reasonable to assume that the dissipation in the 
body of the fluid could be calculated on the assumption that the walls had no 
effect, and that wall effects could be separately treated. The validity of the 
assumption can then be examined post hoc. 

With a cellular flow pattern, the viscous dissipation may be obtained in terms 
of the vorticity .$ and the kinematic viscosity v (cf. Lamb, 1932, Q 329). Thus for 
the body of the fluid, the time average of the dissipation (per unit length along the 
tank axis) will be given by? 

D, = v J I ~  ax1 dx, 

= VJJ(V2$h)~dx1dZz 
= Q V ( ~ :  + k:)2 A2jSsinz klxl sin2 k,x, dx, dx, 

= Q v ( k ; + k p A W D .  (6) 

To calculate the effects of the walls, we shall assume that the wall influence 
penetrates only very slowly into the body of the fluid. Thus a t  small distances 
from the wall the flow will be the same as that which would obtain in the absence 
of the wall. The wall can then be regarded as a source of vorticity alternating at  
radian frequency w .  

The solution to this problem is also given, in essence, by Lamb (1 932, Fj 345). If 
the velocity some distance from the wall is found to be a cos (wt + F )  then the 
velocity at a (small) distance y from the wall will be given by 

a{cos (wt + e) - e--yg cos (wt - yy + e)>, 

where y2 = w/2v.  

The average energy dissipation per unit wall area is thus a2(wv/8) t .  Integrated 
over the three relevant surfaces (two sides and the bottom), this then amounts to 

D2 = AZ(wv/8)* (k! D + 3k; W ) .  (9) 

The energy content, on the other hand, is 

Thus 

and 

t Kinematic units for energy and dissipation will be used throughout. 
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For v = 0.02 cm2 sec-l, which is the approximate value tabulated for this 
glycerin concentration, and a typical wave-number given by m = n = 2,  we 
then find that D,/E = 0.0078se~-~, while D,/E = 0*029se~-~. For m = 10, 
n = 2, we have D,/E = 0.13 sec-l, and D,/E = 0.010 sec-l. Clearly, then, viscous 
dissipation a t  the wall i i  not of dominant importance (although not negligible) 
in the duration ( N 20 sec) of our experiment, and dissipation in the body of the 
fluid is only very important in the higher modes. 

The post hoc justification of our treatment of the wall resistance is as follows. 
A typical value of w is about 1 sec--l, with values ranging between twice and half 
this figure. The 'skin thickness ' (2v/w)* is then about 2 mm which is two orders of 
magnitude smaller than the tank dimensions. It might be argued that the con- 
centration of the loss at the wall would distort the internal wave grossly. However, 
the motion of each mode represents alternation of the concentration of energy 
between kinetic and potential energy. The transfer from potential energy to 
kinetic is through the pressure field, which is an extensive force. The energy loss 
is thus distributed throughout the fluid, provided that the relative loss per cycle 
is small, as is the case here. 

Excitation of modes 
The details of mode excitation are difficult to follow with a theory, since the 

formation of a tube of mixed fluid and the initial collapse of this tube will occur 
simultaneously. However, an idealized model may reproduce the main features. 

Provided that the tube of mixed fluid is formed rapidly compared with the 
characteristic time scales of the internal waves (i.e. with (g/?)-* N 0.4sec) the 
response should approximate that due to an initial localized displacement with 
an initially zero velocity. In  fact O-4sec is not a long time compared with that 
required to form the wake, but a rough analysis based on this assumption is 
nevertheless indicative. 

The effective displacement must be zero a t  the axis of the wake, co-ordinates 
(0, a). A simple representation of such a displacement can be obtained as follows. 
Let us define a function ~ ( x , , x , , t ) ,  where ax/at = $, 21. being a stream 
function. Now let us take 

x = Gx,(x, - a)  exp [ - {x: b, + (xz  - a),  b, '11, (10) 

which represents a disturbance of horizontal scale b,, vertical scale b, centred 
about (0,a). A system of image disturbances, imaged in the walls and the 
surface, should in principle be included, but if b, and b, are small compared with 
the tank dimensions the images may be neglected with little effect. We may 
now examine the excited modes by expanding x in a series of terms of the form 
(4), i.e. 

x = CCB,, sin kixL sin k,xz cos oii t. 

At time t = 0, equating (10) and (1  1) permits calculation of the Bi,. Thus we have 

2G D 
Bii = Jo Jo xl(xz - a )  exp - {x? b i z  + (x,  - a), ZI~) sin k,x, sin kjxz dx, dx,. 
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If n is odd, this yields zero. If n is even, and b, ; b, < W ; D it gives 

Bii = -&rb: b$ ki ki (GI WD) exp - ${k: b: + k; bi} cos kp. 

In  our case a = 7-5cm. Since the theoretical model is far from exact, it is 
difficult to assign a value for b,, b, with any precision, but b = 1.5 cm corresponds 
to a maximum value of x at a position about 1.1 cm from the wake axis. This is 
the radius of the motor, and also seems reasonable in view of the results shown in 
figure 3. 

We define 
Gij = kc ki exp - ${kt b: + k; bi} cos kia. (13) 

Some representative values are in given table 2, taking b, = b, = 1-5 cm. 

n 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
4 
4 
4 
6 
6 
6 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
2 
4 

10 
2 
4 

10 

Gij (arbitrary units) 

- 0.025 
- 0.084 

0-146 
0.065 

- 0.184 
0.037 
0.091 

- 0.046 
- 0.016 

0.025 
- 0.135 
- 0.105 

0.041 
- 0.142 

0.110 
0.042 

6, (see-l) 

0.016 
0.014 
0.015 
0.019 
0.022 
0.030 
0.038 
0.046 
0.057 
0.068 
0.025 
0.026 
0.073 
0.033 
0.035 
0.081 

TABLE 2. Relative amplitude and decay rates for internal wave modes. 

Clearly, with so many modes activated and with no harmonic relation among 
the mode frequencies, the resulting motion will be most complex. The surface dye 
spots, whose motion is shown in figure 5 ,  are well situated to respond to many 
modes, 

The behaviours shown in figures 4 and 5 are from four flow realizations with 
all experimental parameters as nearly equal as we could make them. It is evident 
that the behaviours are different. We must therefore infer that some statistical 
variation in internal wave excitation must occur. The fact that the exciting 
phenomenon is a turbulent one means that this statistical behaviour does not 
cause surprise. The best we can hope to do theoretically, then, is to show that the 
motions observed are each consistent with a reasonable distribution of mode 
excitation. (Of course a statistical theory might be attempted, but this should be 
compared with statistical observations-which we do not have.) 

We have calculated the damped motion of some 30 modes. More could, of 
course, be computed. However, to fit the observations by the best selection from 
these modes would be 'empiricism' of the worst kind, and we shall not attempt it. 
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Instead we have grouped all modes with the same horizontal wave-number, 
assuming that they are activated in the manner given in equation (12). The 
observations we have for comparison are of two kinds; the collapse of the wake 
and the relative displacement of the surface dye spots. Our computations have 
thus been made of quantities directly relatable to these observations. 

Under a linearizing assumption, the displacement of a surface particle is given 

Allen H .  Schooley and R. W.  Stewart 

by A = -ax/ax, a t  x2 = 0,  

= QZkj  Gij sin ki x1 cos wt e-W,  (14) 

0.3 
0.2 
0.1 
0 

- 0.1 
- 0.2 
- 0.3 

0.6 
0.4 
0.2 
0 

- 0.2 
- 0.4 
- 0.6 

0 5 10 15 20 

Time (see) 

FIGURE 6. (a)  Calculated influence of depth of disturbance (a) on surface displacement due 
to modes n = 2, with half vertical thickness of disturbance b, = 1.5 om, as a function of 
time, u = 0.02 cm2 sec-I: a = 7-0 ern - - -, a = 7.5 ern -, a = 8.0 - - -. ( b )  Similar 
to figure 6 (a )  except b, = 2.5 cm and a = 8 cm omitted. a = 7.0 cm - - -, a = 7-5 cm -. 

where Q is an amplitude factor and the Sij are characteristic decay-time constants 
calculated on the basis of viscous decay as discussed above. In  order to show the 
variety of possible results, we have computed 

in 

for times up to 19 sec, and some range of the available parameters. The results 
are displayed in figures 6 and 7. 

Figure 6 (a )  shows the effect, on modes n = 2, of varying only the depth of the 
centre of the disturbance, with b, held constant at 1-5cm. The curves are 
‘normalized’ in such a way that if all the modes were in phase and a t  peak 
amplitude at time t = 0, the resulting amplitude would be unity. It can be seen 
that there is little variation in the apparent frequency of the phenomenon, but 
rather large detailed differences because of variations in the relative excitation of 
different modes. It will be noted that the solid curve (a  = 7.5cm) corresponds 
rather well to the observations of run IV, in figure 5 (c), but none is in particularly 
good agreement with those of run I11 in figure 5 (a )  and (b).  
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Figure 6 ( b ) ,  when compared with 6(a) ,  shows the effect of increasing the 
vertical scale of the disturbance. Increasing this vertical scale (increasing b2) ,  as 
can be seen from equation (13), reduces the relative excitation of modes with 
larger values of kj (or m). This results in somewhat higher apparent frequency. 
Run I11 in figure 5 (a )  and ( b )  seems more nearly of this character. 

Figure 7 (a )  displays the results for three values of horizontal wave-number, 
corresponding to n = 2 , 4  and 6. The increase of apparent frequency as this wave- 
number increases is evident. Comparison with the observations shown in figure 5 
shows that high horizontal wave-numbers cannot dominate because their fre- 
quency is too high. 

Time (sec) 

FIGURE 7. (a )  Calculated influence of  the order of horizontal wave-number on the behaviour 
of  surface displacement as a function of time. a = 7.5 cm, b, = 1.5 cm, Y = 0.02 cmz sec-l. 
n = 2 -, n = 4 - - -, n = 6 - - --. ( 6 )  Calculated influence of assuming different 
values for the viscosity on the behaviour of surface displacement as a function of time. 
n = 2 ,  a = 7.5 cm, I, = 0.02 cm2 sec-l- - -, 
Y = 0.04 cm2 sec-l -. 

b, = 1.5 cm. v = 0 emz sec-l - - -, 

In figure 7 (b) ,  to demonstrate the dissipation effects, we have plotted curves 
for v = 0,  for v = 0.02 cmzsec-1 (the tabulated value for a glycerin solution of 
about the concentration used here), and for v = 0.04 ern2 sec-l. f 

It appears that the assumption that dissipation is purely viscous does not lead 
to an appreciable underestimate of the observed damping. Thus turbulence 
cannot be a dominant contributor to decay-neither residual turbulence in the 
wake nor any turbulence induced by the internal wave motion. 

The comparison between the calculations shown in figures 6 and 7 and the 
observatioiis of figure 5 lead us to believe that although we are unable to pro- 
duce exact correspondence between calculation and observation, the motion of 

t The figures for this last curve were available, we must admit, because we at first 
made the common undergraduate error of using the energy dissipation correction for 
the amplitudes. 
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surface dye spots is chiefly due to modes with n = 2. This is borne out by closer 
examination. 

The dye spots of run 111, whose separation is shown in figure 5 (b) ,  are rather 
close to the centre line. The relative response to modes with larger values of n is 
therefore rather greater than to the lower wave-numbers. For n = 2; 4; 6 the 
ratios are 1: 1.49: 1.64. 

On the other hand, comparison with the theoretical curves of figure 7 ( b )  reveals 
that the similarity between the observations and the calculated curves for n = 2, 
particularly the one using u = 0.02 em2 sec-l, is quite striking. This is especially 
true if a virtual origin, 2 see after passage, is used for the time. No such 
agreement is observed for the modes with larger values of n. The apparent 
frequency characteristic of these modes is too great. It will also be noted that the 
observations of run IV fit better with the calculations shown in figure 7 ( b ) ,  for 
b, = 1*5cm, than with those of figure 6 ( b ) ,  with b, = 2.5cm. The difference 
between the two calculations arises because with the larger value of b, there is 
very little excitation of modes m > 5, while for the smaller value of b, modes up 
to m = 10 remain important. 

The movement of surface dye spots thus leads us to believe that while a large 
number of vertical modes (different values of m) are excited in this flow realiza- 
tion, the chief horizontal modes (different values of n) contributing are those 
with n = 2. 

The results for the other flow realization may be contrasted. The two 
wider-spaced dye spots (figure 5 (a)) respond to modes n = 2; 4; 6 in the 
ratio 1:0.08:-0-95; the more closely spaced spots (figure 5(b ) )  in the ratio 
0.59: 0.95: 0.99. (These numbers may also be used in comparison with the wider 
spaced spots.) 

If modes with n > 2 are important, then, we should expect large differences 
between the behaviour shown in figure 5 ( a )  and (b) .  There is a difference, but it 
is the similarity rather than the difference which is the notable feature of the 
curves. Indeed, if we assume that only the modes n = 2 are activated, the curve 
shown in figure 5 ( b )  would be identical with that of 5 (a )  except that the amplitude 
would be only 0.59 as large. We have therefore shown, dashed, such a curve on 
figure 5 (b) .  Evidently most of the features are due to the modes n = 2, and less 
than half the amplitude is due to high modes. 

All this means that in both runs there must be a very striking difference in the 
effective horizontal and vertical scales of the disturbance. Mode n = 2 has a 
horizontal wave-number of 0-18 cm-l. However, the mode with the largest con- 
tribution to figure 6 (a )  (and to figure 7 ( b ) )  has avertical wave-number 1.25 cm-l, 
nearly an order of magnitude larger ! It appears that the density gradient not 
only causes the wake to collapse, but also exhibits its well-known inhibiting effect 
on vertical motions, causing the turbulence to be much more effective in mixing 
horizontally than vertically. 

We have, moreover, additional information-the behaviour of the collapsing 
wake. Since the top of the wake is approximately in the centre of the tank, in our 
model this wake edge may be fairly well represented by the displacement 

a t  x, = t D  (xl = 0), 
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i.e. by (15) 
zj 

where j is even and i is odd. 
Once more we sum over modes with the same value of n, and for two values of b,. 

The results are displayed in figure 8, normalized to unity at  time zero. Before 
examining the rate of wake collapse, it  is necessary to consider carefully the 
relation between the computed curves and the observations. By fitting the 
experimental and calculated curves, the following instructive quantitative 
calculation may be made. 
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FIGURE 8. ( a )  Calculated displacement at  tank centre (0 , iD)  as a function of time, with 
different values of horizontal wave-number and 6, = 1.5 cm. ( b )  Similar to figure 8 (a) for 
b2 = 2.5 cm and n = 2 .  

The peak increase in spot separation shown in figure 5 (c) is about 0.8 cm. If the 
motion is entirely due to modes for which n = 2 ,  it  is a simple calculation to show 
that the maximum displacement of a surface particle would be 0.9 cm. On the 
other hand, the peak value of CkiGZj  for n = 2 ,  b, = 1-5cm, is 0.26cm. The 
relevant amplitude factor Q is thus about 3-5. We may then compute the corre- 
sponding initial displacement a t  the tank centre, which is therefore given by 
3-5 x 0.252 (G,j( ( j  odd) and turns out to be 0.6cm. Elimination of this much 
displacement above and below the wake leads to a reduction in thickness of 
1.2 cm-which is more than the observed collapse ! We must conclude that some 
of the initial wake collapse occurs before the maximum wake growth has been 
completed. 
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This makes difficult comparison between the observations of figure 4 and the 
calculations shown in figure 8. Nevertheless, it does seem that the observations 
indicate a faster collapse than we should expect from modes n = 2. Some contri- 
bution from higher horizontal modes is thus likely. It should be noted that 
because of the factor kc in equation (15), modes with higher values of n are 
appreciably more effective in the vertical movements of the wake collapse than 
in the horizontal dye spot movements. 

Perhaps some admixture of effects from modes of different horizontal wave- 
number accounts for the absence in the observational data of the ‘ overshoot ’ and 
‘rebound’ so noticeable in the calculated curves of figure 8. 

Summary and conclusions 
It has been shown that the turbulent wake behind a self-propelled body 

behaves quite differently when the fluid is stratified from when it is homogeneous. 
In  the stratified case the tube of fluid mixed by the turbulence of the wake is 
subject to buoyancy forces, and tends to collapse vertically. 

This vertical collapse is shown to be an efficient generator of internal waves 
which reveal themselves in movements a t  the surface. It appears that while 
internal waves with high vertical wave-numbers are excited (indeed we know of 
no mechanism reported in the literature so efficient in producing high mode 
excitation) only modes with rather low horizontal wave-numbers contain much 
energy. This leads us to believe that the effective initial disturbance is much wider 
than it is deep-due perhaps to the inhibition on vertical turbulent mixing 
imposed by the density gradient. 

Since the observed rate of decay of the induced motion does not appreciably 
exceed that calculated to arise due to viscosity alone, we infer that turbulence 
is not of much importance, in this case, in the energy dissipation. 

We wish to thank Dr H. L. Grant for valuable collaboration in performing the 
experiments, and Dr J. Uretsky for useful ideas on the theoretical understanding. 
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FIGURE 3. Horizontal (in mirror above) and vertical wakes. (a),  (b)  and ( e ) ,  no dcnsity 
gradient a t  time equal to 0, 1 and 3 scc rcspectively; (d) ,  ( e )  and ( f ) ,  dcnsity gradient a t  
time equal to 0, 1 and 3 see respectively. 
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